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Abstract
The data revolution holds a significant promise for the health sec-
tor. Vast amounts of data collected and measured from individuals
will be transformed into knowledge, AI models, predictive systems,
and digital best practices. One area of health that stands to ben-
efit greatly from this advancement is the genomic domain. The
advancement of AI, machine learning, and data science has opened
new opportunities for genomic research, promising breakthroughs
in personalized medicine. However, the increasing awareness of
privacy and cyber security necessitates robust solutions to protect
sensitive data in collaborative research. This paper presents a prac-
tical deployment of a privacy-preserving framework for genomic
research, developed in collaboration with Lynx.MD, a platform
designed for secure health data collaboration. The framework ad-
dresses critical cyber security and privacy challenges, enabling the
privacy-preserving sharing and analysis of genomic data while
mitigating risks associated with data breaches. By integrating ad-
vanced privacy-preserving algorithms, the solution ensures the
protection of individual privacy without compromising data utility.
A unique feature of the system is its ability to balance the trade-offs
between data sharing and privacy, providing stakeholders with
tools to quantify privacy risks and make informed decisions. The
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implementation of the framework within Lynx.MD involves encod-
ing genomic data into binary formats and applying noise through
controlled perturbation techniques. This approach preserves essen-
tial statistical properties of the data, facilitating effective research
and analysis. Additionally, the system incorporates real-time data
monitoring and advanced visualization tools, enhancing user expe-
rience and decision-making capabilities. The paper highlights the
need for tailored privacy attacks and defenses specific to genomic
data, given its unique characteristics compared to other data types.
By addressing these challenges, the proposed solution aims to foster
global collaboration in genomic research, ultimately contributing
to significant advancements in personalized medicine and public
health.

CCS Concepts
• Security and privacy → Privacy-preserving protocols; • Us-
ability in security and privacy;
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1 Introduction
The world has an incremental progress in collecting genomic data
over the years. The new generation of capabilities including AI,
machine learning, and data science, provide a new opportunity
to investigate and run research that may identify new variants,
connect symptoms to root causes, and develop new (personalized)
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medicines. Every healthcare institution, a clinic, a health research
center, and a medical organization, holds unique information that
can highly contribute to the global research of specific cases and
problems. While this is clear, at the same time, humanity increases
the awareness and the perceived importance of privacy and cyber
security. Making the maximum effort to protect the patients’ infor-
mation and personal data of individuals that participate in clinical
trials is of high importance. An important development in defining
the responsibilities of these procedures’ organizers has helped pro-
tect private data against unintentional leakage or malicious attacks.
The outcome of this progress between other reasons creates a situ-
ation that most of this valuable data stays at the organizations that
gathered the information rather than data sharing and collaborative
research across institutions.

In this work, we provide our vision for privacy-preserving col-
laborative genomic research and showcase our first attempt for
practical, a real-life deployment. In order to make this work prac-
tical and connected to real use-cases we work with an industry
collaborator, Lynx.MD, and use the existing genomic data storage
platform of this partner. Lynx.MD is an American Israeli start-up
that has developed a platform for health data collaboration between
healthcare institutions, pharma companies, and research founda-
tions. The practical use-cases and the real data are essential for the
ability to deeply study the research goals. The proposed framework
mainly addresses the cyber security and privacy issues that can
better protect the data and reduce the damage in case of any data
breach. It also allows researchers (users of Lynx.MD, who store
their datasets in the platform) share their datasets among each other
(e.g., for collaborative research) in a privacy-preserving way and
share their AI models as black-box.

We also propose including a component in the system that
demonstrates the trade-off between information sharing and the
associated privacy costs. Currently, there are no interpretable tools
available to measure privacy loss, resulting in decisions about data
sharing being made without full awareness. Individuals responsible
for these decisions are not always privacy and security experts,
making it essential to develop methodologies that clearly present
privacy penalties and provide the necessary context for informed
decision-making.

Overall, this work addresses one of the most innovative domains
that requires solving key challenges in order to make a dramatic
change on the global ability to leverage distributed health data.
Doing so will contribute to creating more collective data reposi-
tories that may enable the use of AI to find solutions, make diag-
noses, and developmedicines for themost prioritizedworld diseases.
To achieve our vision, we have already developed and integrated
privacy-preserving algorithms with the Lynx.MD platform, created
interpretable privacy risk tools, and deployed these mechanisms
in high-performance computing environments. These steps ensure
robust data protection and facilitate collaborative research. Moving
forward, we will focus on evaluating and validating these tools
with real-world data, fostering collaboration and training, and con-
tinuously enhancing cybersecurity measures. This roadmap aims
to ensure robust data protection, facilitate collaborative research,
and enable the practical use of AI and machine learning in genomic
research while addressing privacy and security concerns. Note that
although this work focuses on privacy, cybersecurity aspects are an

integral part of protecting assets and data confidentiality. AI models
are part of the protected landscape, along with the technologies
used to better defend processes and data flow [20, 26, 29]. Future
work will explore this aspect in greater depth.

2 Related Works
We discuss related work from four aspects: privacy risks for ge-
nomic data, privacy-preserving solutions for genomic research, and
machine learning (ML) and AI privacy.

2.1 Privacy Risks for Genomic Data
Genomic privacy has recently been explored bymany researchers [4,
5, 23, 51, 59]. Several works have shown that anonymization does
not effectively protect the privacy of genomic data [27, 28, 30, 39,
42, 45, 58]. Previous research have demonstrated that the identity of
a participant of a genomic study can be revealed by using a second
sample, that is, part of the DNA information from the individual
and the results of the clinical study [19, 31, 33, 54, 57, 61, 63, 67].
Furthermore, several studies have examined phenotype prediction
from genomic data, as a means of tracing identity [3, 18, 32, 41, 43,
44, 46, 52, 62, 69]. This line of research highlights the vulnerabili-
ties in genomic data sharing, particularly when datasets are linked
with other publicly available data sources. The predictive power of
genomic data can be exploited to infer sensitive information about
individuals, such as their susceptibility to certain diseases or traits
like eye and hair color, which can then be used for discriminatory
purposes.

Recent studies have also highlighted the potential for privacy
breaches through familial search techniques, where an adversary
can identify individuals by matching their genetic markers with
those of their relatives [28]. This method leverages the genetic
similarity among family members to breach privacy, making it a
significant concern for genomic data sharing practices. The grow-
ing availability of public genetic databases intensifies this risk, as
these repositories provide a rich source of genetic information that
can be leveraged to cross-reference and identify individuals from
anonymized datasets.

2.2 Privacy-Preserving Solutions for Genomic
Research

Most proposed solutions to utilize or share genomic data are either
based on obfuscation or the use of cyptographic techniques. Some
researchers have proposed using differential privacy (DP) concept
to mitigate membership inference attacks when releasing summary
statistics, such as minor allele frequencies and chi-square values [24,
38, 66]. DP provides a mathematical framework that ensures the
addition or removal of a single database item does not significantly
affect the outcome of any analysis, thereby preserving the privacy
of individuals in the dataset.

A significant subset of cryptographic solutions focuses on pri-
vate pattern-matching and comparison of genomic sequences [11,
21, 34, 50, 60]. For privacy-preserving clinical genomics, Baldi et al.
proposed private set intersection-based techniques [10]. These tech-
niques allow researchers to identify common genetic variants across
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datasets without revealing individual data points. Similarly, par-
tially homomorphic encryption has been proposed for the privacy-
preserving use of genomic data in clinical settings, enabling com-
putations to be performed on encrypted data without revealing
the underlying information [6–9]. Kantarcioglu et al. proposed ho-
momorphic encryption-based techniques for privacy-preserving
genomic research, which allow secure computations on genetic
data without revealing the data itself [40]. Wang et al. proposed pri-
vate edit distance protocols to find similar patients across multiple
hospitals, enhancing collaborative research without compromising
patient privacy [64]. These cryptographic methods offer robust pri-
vacy guarantees and are particularly suited for applications where
sensitive genomic data must be processed securely.

Despite these advancements, cryptographic solutions face chal-
lenges related to interoperability and practicality. Different genomic
analysis problems require distinct cryptosystems, leading to secu-
rity and efficiency issues when integrating multiple systems. The
computational intensity of some techniques also poses challenges
for large-scale studies.

Future research should prioritize developing unified frameworks
that offer comprehensive privacy-preserving solutions while main-
taining high data utility and efficiency. This includes designing
versatile cryptographic systems that can handle diverse genomic
analysis tasks and ensuring scalability to manage the increasing
volume of genomic data generated by modern sequencing tech-
nologies. Advancing these areas will enable genomic research to
progress without compromising data privacy and security.

2.3 ML/AI Privacy
A wide range of privacy attacks have been proposed against ML
models in recent years, demonstrating various ways in which ML
may leak sensitive data during or after training [15, 25, 56, 68]. For
example, membership inference attacks enable adversaries with
access to a trained model to determine whether a record of data
was used in training [56]. As another example, model inversion
allows adversaries to reconstruct training samples from trained
models [25]. Other attacks include, but are not limited to unintended
memorization [15] and input and label reconstruction in federated
learning [68].

ML privacy attacks can serve as a means to empirically quantify
leakage of private data under various settings. Still, to our knowl-
edge, these attacks have primarily been explored and used by ML
privacy academics. In our vision (Sec. 3), the attack outcomes would
be made available to the stakeholders on the Lynx.MD platform to
aid them in decision making when they need to decide whether
to release a model trained on the platform. We also note that ML
privacy attacks have been mainly studied in the vision and text
domains, with little effort exploring their effectiveness on genomic
and health data. Accordingly, it remains unclear whether estab-
lished attacks can reliably assess privacy leakage in ML in these
domains, suggesting that new attacks tailored for genomic and
health data may need to be developed.

Researchers have also proposed various methods to enhance ML
privacy [2, 12, 49, 53]. While some of these methods do not prov-
ably guarantee privacy but have been demonstrated empirically
effective [49], other methods also carry provable guarantees [2, 53].

Notably, the differentially private stochastic gradient descent al-
gorithm [2] enables training ML models via stochastic gradient
descent while satisfying differential privacy guarantees, thus, in a
sense, providing plausible deniability about whether certain records
were used in training. In our vision, these defenses would be pro-
vided as a service to users of the Lynx.MD platform, thus helping
protect data privacy when training models (Sec. 3).

3 Our Vision
To address the critical challenges associated with genomic data
privacy, we developed a comprehensive privacy-preserving solution
for integration with the Lynx.MD platform. This solution leverages
advanced privacy-preserving solutions to ensure robust privacy
protections while maintaining the utility of shared genomic data.

In our broader vision, Lynx.MD serves as a sandbox platform
where researchers can securely upload and share their genomic
datasets. Our privacy preserving algorithms are seamlessly inte-
grated into Lynx.MD, providing users with tools to analyze and
share data without exposing sensitive information. Additionally,
a user-friendly interface and sophisticated visualization tools will
be developed to allow users to easily manage their datasets and
understand the privacy and utility levels of shared data. These tools
are crucial for making informed decisions about data sharing and
analysis.

3.1 Data Sharing Between Lynx.MD Users
We employed a state-of-the-art privacy-preserving genomic dataset
sharing algorithm [36], which operates in two critical stages: data
perturbation and utility restoration. Initially, the genomic SNP data,
with values 0, 1, and 2, is encoded into binary space where each
SNP value is transformed: 0 to 00, 1 to 01, and 2 to 11, resulting
in a binary matrix of size n×2m. Following this, a noise matrix
of the same dimensions is generated using a binary-valued XOR
mechanism [35], which adds noise to the encoded data to obscure
the original genomic sequences. The noise matrix is created with
Bernoulli-distributed values, accounting for both row (individual)
and column (SNP)-wise correlations as described in the original
work [35]. However, due to the computational complexity of the
XOR mechanism in large genomic datasets, we have developed an
enhanced version of noise sampling called efficient binary noise
generation [37]. This enhancement allows for the efficient gener-
ation of the noise matrix, which is then XORed with the encoded
data, producing a noisy binary matrix. The noisy matrix is subse-
quently decoded back into the original SNP space before sharing,
though this occurs prior to any utility-enhancing post-processing.

To further preserve data utility, particularly for genome-wide
association studies (GWAS), we employ a utility restoration stage
that adjusts the minor allele frequencies (MAFs) [16] in the noisy
dataset to better align with publicly available MAF values. This post-
processing method uses an optimal transport approach, specifically
the earth mover’s distance [55], to determine the minimal number
of alleles to flip to achieve the desired alignment. The process is as
follows:

(1) Calculate the MAF value M̃ 𝑗 of each SNP 𝑗 in the noisy
(binarized) dataset �̃�𝑏 .
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(2) Compute the transition from M̃ 𝑗 to the reference MAF M̃𝑟
𝑗

using the earth mover’s distance, which estimates the per-
centage of alleles to be flipped.

(3) Determine the exact number of alleles to flip by applying
the floor function to the percentage multiplied by the total
number of alleles.

(4) Randomly select and flip the necessary alleles.

This post-processing effectively enhances the reproducibility of
GWAS and minimizes the point error, improving the overall utility
of the shared dataset. The robustness of our approach is further
demonstrated by its ability to maintain the privacy of individuals’
genomic data while allowing researchers to replicate significant
findings reliably.

This two-stage privacy-preserving scheme is essential for main-
taining the confidentiality of genomic data while preserving its
utility for research purposes. Our implementation within a high-
performance computing (HPC) environment ensures that the pro-
cess is scalable and capable of handling large datasets. The Lynx.MD
platform, which serves as a controlled environment for data shar-
ing, incorporates this mechanism to allow researchers to securely
upload their datasets. The platform’s design also supports collabo-
rative research by providing secure access to shared datasets and
tools necessary for joint studies. Once datasets are uploaded, the
Lynx.MD platform applies the privacy-preserving scheme, ensuring
the data remains protected while still being usable for advancing
personalized medicine and other research initiatives. The use of a
privacy budget 𝜖 allows us to balance the privacy-utility tradeoff ef-
fectively, with an optimal range of 𝜖 between 1 and 1000, equivalent
to a privacy budget of less than approximately 0.2 per SNP [37]. This
tradeoff is crucial for maintaining data utility while safeguarding
individual privacy.

Additionally, the verifier, who may be a reviewer in a peer review
process or another researcher seeking to validate the results, can
reproduce the researcher’s experiments using a sanitized version of
the dataset. This process includes calculating the SNP retention rate,
a metric that indicates the percentage of SNPs that remain statisti-
cally significant in reproduced results compared to those reported
by the researcher. The verifier can also use public information dur-
ing this process, potentially applying a relaxed p-value threshold
to assess the SNP retention rate. By comparing the retention rate
to a theoretical ideal or expected rate, the verifier can assess the
reliability of the findings. If the difference between the actual and
expected rates falls within a specified threshold, the findings are
deemed reliable. Otherwise, further investigation may be initiated,
or additional detailed information may be requested, pending In-
stitutional Review Board (IRB) approval. The public availability
of MAF statistics, which is allowed according to NIH guidelines,
further strengthens the privacy guarantees of our method, as dif-
ferential privacy’s immunity to post-processing ensures that these
statistics do not compromise the overall privacy of the data [22].

3.2 Privacy Assurance in ML Models on the
Lynx.MD Platform

A fundamental premise of the Lynx.MD platform is that training
machine learning (ML) models on the data available through the
platform enables technologists and scientists to develop innovative

technologies and derive valuable scientific insights. However, as
previously discussed (Sec. 2.3), releasing these models carries signif-
icant privacy risks. Adversaries may leverage access to the models
to infer sensitive information about individuals’ genomic or health
data. Thus, it is imperative to ensure that the models leak minimal
to no information about the training data before their release from
the platform. To this end, our vision includes providing stakehold-
ers (both data owners and users) with an automated evaluation
system that assesses the extent to which models leak information
about their training data. Additionally, stakeholders will receive
recommendations for potential defenses that can be incorporated
during training to enhance the protection of the training data.

Various privacy attacks have been proposed and thoroughly
evaluated against ML models, as previously mentioned (Sec. 2.3).
However, genomic datasets exhibit significant differences com-
pared to the image or text datasets commonly used in past eval-
uations [14, 56]. In return, these differences can impact the effec-
tiveness of attacks. First, genomic datasets typically have relatively
small sample sizes, as collecting genomic data remains more ex-
pensive than collecting text or image data, which can be easily
gathered from the internet, albeit not always labeled. Some attacks
require auxiliary datasets to train surrogate models that are later
used to infer membership [14]. These may be ineffective against ge-
nomic models due to data scarcity. Second, while there are millions
of genomic features—such as Single Nucleotide Polymorphisms
(SNPs) [13] that can be ingested by models, the number of useful
features in a given dataset is often substantially smaller, with each
feature admitting a limited set of values. In contrast, image and text
datasets contain significantly more dimensions (e.g., 3,072–268,203
dimensions for standard image datasets), each admitting 256 dif-
ferent values [56]. The lower dimensionality of genomic data may
decrease overfitting, rendering certain attacks such as member-
ship inference more challenging [65]. Furthermore, many genomic
prediction models (e.g., Ordinary Least Squares, Classical Ridge Re-
gression, Linear regression, Classical Elastic Net and Bayesian Ridge
regression [47]) are inherently more transparent and less prone to
overfitting, making them robust choices for genomic data analy-
sis. These attributes ensure that the models provide reliable and
interpretable results, even when integrated into privacy-preserving
frameworks. All in all, it may be necessary to develop novel attacks
specifically tailored for genomic data, and health data in general,
to reliably assess ML models’ leakage. Indeed, as our evaluation
of existing attacks showed limited success, we intend to plan to
explore new attack directions in future work (e.g., by leveraging
augmentations better-suited for genomic data [17]).

3.3 Communicating the Privacy Risk to Users
Once the risk of private information leakage due to data sharing or
ML model release is assessed, it is necessary to communicate the
risk to users to facilitate their decision making regarding whether
to share data or models. To this end, among others, it is crucial
to communicate to users the (1) potential implications of certain
risks (e.g., membership inference); (2) theoretical guarantees of
countermeasures applied (e.g., differential privacy mechanisms);
(3) empirical assessment of data leakage (e.g., for potential success
of membership inference); (4) assumptions behind the attacks for
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which the risk is estimated (e.g., whether the adversary has auxil-
iary data); (5) potential tradeoffs between utility and privacy that
can be attained with various countermeasures. We intend to devise
a privacy dashboard that conveys such information to stakeholders
in an usable manner. Primarily, for usability, it is essential to opti-
mize accessibility and run time. For the former, we plan to rely on
established literature offering ways to describe the sophisticated
theoretical guarantees of certain defenses [48] and conduct user
studies to find adequate means to convey metrics estimated by ML
privacy attacks that would be accessible by stakeholders with a
wide-range of backgrounds and expertise. For the latter, we intend
to explore means to enable prompt assessment of necessary metrics
(e.g., by proposing more efficient attacks).

4 Proof-of-Concept Implementation
We integrated the privacy-preserving genomic data sharing scheme
into the Lynx.MD platform and rigorously assessed both the privacy
and utility of the data using comprehensive metrics. Our analysis
employed a variety of tests, including Average Point Error, Average
Sample Error, andMean and Variance Error, which together indicate
how well the integrity and statistical properties of the original
dataset are preserved post-transformation. The privacy level of
the data was measured using the differential privacy parameter, 𝜖 ,
which provides strong privacy protection at different levels.

Figure 1: Lynx.MD Platform

4.1 Dataset
The dataset utilized for evaluating our privacy-preserving solution
comprises a comprehensive collection of genomic data typical of
what might be used in advanced medical research. This dataset
features a broad spectrum of SNP variations, representing a diverse

genetic background to ensure the generalizability of our results.
Prior to the application of our privacy-preserving mechanisms, ge-
nomic data was encoded into a binary matrix format. This prepara-
tory step was critical for facilitating the subsequent integration of
our novel two-stage privacy-preserving algorithm, which applies
controlled noise and utilizes publicly known statistics to enhance
data quality.

We implemented and evaluated our proposed scheme on real-life
genomic datasets from the OpenSNP project [1], which is a public
platform that allows users to share their genetic data, typically
derived from consumer genetic testing services. We selected three
phenotypes for our study: lactose intolerance, hair color, and eye
color. The lactose intolerance dataset includes 9,091 SNPs from
60 individuals with lactose intolerance. The hair color dataset
contains 9,686 SNPs from 60 individuals with dark hair. The eye
color dataset is larger, with 28,396 SNPs among 401 individuals
with brown eyes. Additionally, a handedness dataset is included
with 28,396 SNPs among 401 individuals.

We built a reference dataset for each phenotype, aligning the
SNPs with the target dataset to be shared. These reference datasets
were constructed from the remaining data in the OpenSNP project.
This thorough dataset selection and preparation ensured that our
evaluation was robust and reflective of real-world scenarios. Note
that we included these datasets on the Lynx.MD platform as users
of the platform and ran the algorithms on the platform using these
datasets as shown in Figure 1.

4.2 Utility and Privacy Evaluation
Our results in [36] demonstrate that the proposed scheme consis-
tently outperforms existing methods in maintaining data utility,
regardless of the privacy budget. This strong performance high-
lights how effective our two-stage privacy-enhancing mechanism is.
By adding controlled noise and using a unique post-processing tech-
nique, we achieve an excellent balance between data privacy and
usability. This is essential for moving forward with collaborative
genomic research and personalized medicine.

On the other hand, the differential privacy framework safeguards
against inference attacks, such as membership inference attacks,
by injecting noise and protecting SNP value distributions, thereby
offering robust privacy protection and high data utility.

4.3 System Performance
The proposed privacy-preserving dataset sharing scheme intro-
duces minimal overhead and demonstrates lower computational
complexity compared to existing methods. Utilizing an efficient
perturbation technique based on the XOR mechanism, the scheme
significantly reduces time complexity by calibrating noise through
column-wise correlation of SNPs, thus expediting the perturbation
process without compromising privacy guarantees. This enhance-
ment allows the scheme to handle large genomic datasets practically
within a reasonable timeframe.

The scalability of the proposed dataset-sharing solution, when
integrated with Lynx.MD, is highly promising. Designed to unlock
the power of comprehensive healthcare data, Lynx.MD’s robust in-
frastructure enables efficient management and distribution of large-
scale genomic datasets. The integration leverages advanced data
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processing and security capabilities, ensuring that the solution can
handle increasing volumes of data without performance degrada-
tion. The efficient perturbation and utility restoration mechanisms
of the proposed scheme maintain low computational complexity,
enhancing scalability as the dataset size grows. Consequently, the
combined strengths of the platform and the scalable dataset-sharing
solution facilitate effective and secure sharing of vast genomic data,
driving significant advancements in healthcare research.

5 Conclusion
In this paper, we have demonstrated the feasibility and practical-
ity of a privacy-preserving framework for collaborative genomic
research, addressing the critical need for secure data sharing in
the era of personalized medicine. By leveraging advanced privacy-
preserving algorithms, our solution ensures robust protection of
sensitive genomic data while maintaining its utility for research
purposes. The collaboration with Lynx.MD has been instrumental
in validating our approach, showcasing how industry partnerships
can enhance the deployment of privacy-preserving data platforms.
Our method effectively balances the trade-offs between data shar-
ing and privacy, providing stakeholders with transparent tools to
assess privacy risks andmake informed decisions. Our experimental
results confirm that the proposed framework outperforms existing
methods in both privacy protection and data utility, highlighting
its potential for broader application in genomic research and other
fields requiring sensitive data handling. The integration of real-time
monitoring and visualization tools further enhances the user expe-
rience, promoting more effective and secure collaboration. Future
work will focus on refining the privacy-preserving techniques and
exploring additional applications in other domains. By continuing
to address the unique challenges posed by genomic data, we aim to
foster global collaboration and drive significant advancements in
personalized medicine and public health.
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