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Abstract

To help adversarial examples generalize from surrogate machine-
learning (ML) models to targets, certain transferability-based black-
box evasion attacks incorporate data augmentations (e.g., random
resizing). Yet, prior work has explored limited augmentations and
their composition. To fill the gap, we systematically studied how
data augmentation affects transferability. Specifically, we explored
46 augmentation techniques originally proposed to help ML models
generalize to unseen benign samples, and assessed how they impact
transferability, when applied individually or composed. Performing
exhaustive search on a small subset of augmentation techniques
and genetic search on all techniques, we identified augmentation
combinations that help promote transferability. Extensive exper-
iments with the ImageNet and CIFAR-10 datasets and 18 mod-
els showed that simple color-space augmentations (e.g., color to
greyscale) attain high transferability when combined with standard
augmentations. Furthermore, we discovered that composing aug-
mentations impacts transferability mostly monotonically (i.e., more
augmentations → ≥transferability). We also found that the best
composition significantly outperformed the state of the art (e.g.,
91.8% vs. ≤82.5% average transferability to adversarially trained
targets on ImageNet). Lastly, our theoretical analysis, backed by
empirical evidence, intuitively explains why certain augmentations
promote transferability.

CCS Concepts

• Computing methodologies→ Neural networks; • Security
and privacy→ Software and application security.
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1 Introduction

Adversarial examples (AEs)—variants of benign inputs minimally
perturbed to induce misclassification at test time—have emerged as
a profound challenge to machine learning (ML) [1, 40], calling its
use in security- and safety-critical systems into question (e.g., [10]).
Many attacks have been proposed to generate AEs in white-box
settings, where adversaries are familiar with all the particularities
of the attacked model [30]. By contrast, black-box attacks enable
evaluating the vulnerability of ML in realistic settings, without
access to the model [30].

Attacks exploiting the transferability-property of AEs [40] have
received special attention. Namely, as AEs produced against one
model are often misclassified by others, transferability-based at-
tacks produce AEs against surrogate (a.k.a. substitute) white-box
models to mislead black-box ones. To measure the risk of AEs in
black-box settings accurately, researchers have proposed varied
methods to enhance transferability (e.g., [25–27]). Notably, attacks
using data augmentation, such as translations [8] and scaling of
pixel values [26], as a means to improve the generalizability of AEs
across models have accomplished state-of-the-art transferability
rates. Still, previous transferability-based attacks have studied only
six augmentation methods (see §3.1), out of many proposed in the
data-augmentation literature, primarily for reducing model overfit-
ting [35]. Hence, the extent to which different data-augmentation
types boost transferability, either individually or when combined,
remains largely unknown.

To fill the gap, we conducted a systematic study of how aug-
mentation methods influence transferability. Specifically, alongside
techniques considered in previous work, we studied how 46 aug-
mentation techniques pertaining to seven categories impact trans-
ferability when applied individually or composed (§3). Integrating
augmentation methods into attacks via a flexible framework (Alg. 1),
we searched for augmentation-combinations that can help boost
transferability via inefficient but optimal exhaustive search on a
small subset of augmentations and efficient, near-optimal genetic

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3689932.3694769
https://doi.org/10.1145/3689932.3694769
https://doi.org/10.1145/3689932.3694769


AISec ’24, October 14–18, 2024, Salt Lake City, UT, USA Zebin Yun, Achi-Or Weingarten, Eyal Ronen, & Mahmood Sharif

search on a search space containing all augmentations (§3.4). We
conducted extensive experiments using an ImageNet-compatible
dataset, CIFAR-10 [22], and 18 models, and measured transferabil-
ity in diverse settings, including with and without defenses (§5–6).
Furthermore, by studying the impact of augmentations on model
gradients, we offer a theoretical explanation for why certain aug-
mentations can promote transferability (§4) that we later support
with empirical results (§6.7).

In a nutshell, we make the following contributions:

• We find that simple color-space augmentations exhibit perfor-
mance commensurate with that of state-of-the-art techniques.
Notably, they surpass state-of-the-art techniques in terms of
transferability to adversarial training models, while simultane-
ously offering a reduction in running time costs (§6.1 and §6.6).

• We propose parallel composition to integrate a large number
of augmentations into attacks (§3.3) and find it boosts transfer-
ability compared to composition approaches previously used
(§6.5). Further, with parallel composition, we discover that trans-
ferability has a mostly monotonic relationship with the new
data-augmentation techniques we introduce and ones used in
prior work (§6.2).

• We show that attacks integrating the best augmentation combina-
tions discovered by exhaustive and genetic search (UltCombBase
and UltCombGen, respectively) outperform state-of-the-art at-
tacks by a large margin (§6.4).

• We theoretically demonstrate that augmentations can smoothen
surrogate models’ gradients, which in turn can improve transfer-
ability (§4), and empirically back the theory (§6.7).

2 Background and Related Work

Evasion Attacks Many evasion attacks assume adversaries have
white-box access to models—i.e., adversaries know models’ archi-
tectures and weights (e.g., [3, 12, 40]). These typically leverage first-
or second-order optimizations to generate AEs models would mis-
classify. For example, given an input 𝑥 of class 𝑦, model weights 𝜃 ,
and a loss function 𝐽 , the Fast Gradient Sign method (FGSM) of [12],
crafts an AE 𝑥 using the loss gradients ∇𝑥 𝐽 (𝑥,𝑦, 𝜃 ):

𝑥 = 𝑥 + 𝜖 ∗ sign(∇𝑥 𝐽 (𝑥,𝑦, 𝜃 ))

where sign(·) maps real numbers to -1, 0, or 1, depending on their
sign. Following FGSM, researchers proposed numerous advanced
attacks. Notably, iterative FGSM (I-FGSM) performsmultiple update
steps to 𝑥 to evade models [24]:

𝑥𝑡+1 = Proj𝜖𝑥

(
𝑥𝑡 + 𝛼 · sign

(
∇𝑥 𝐽 (𝑥𝑡 , 𝑦, 𝜃 )

))
where Proj𝜖𝑥 (·) projects the perturbation into ℓ∞-norm 𝜖-ball cen-
tered at 𝑥 , 𝛼 is the step size, and 𝑥0 = 𝑥 . In this work, we study
attacks based on I-FGSM.

In practice, adversaries often lack white-box access to victim
models. Hence, researchers studied black-box attacks in which
adversaries may only query models. Certain attack types, such as
score- and boundary-based attacks perform multiple queries, often
around several thousands, to produce AEs (e.g., [2, 19]). By contrast,
attacks leveraging transferability (e.g., [12, 40]) avoid querying

victim models, and use surrogate white-box models to create AEs
that are likely misclassified by other black-box ones.

Enhancing transferability is an active research area. Some meth-
ods integrate momentum into attacks such as MI-FGSM to avoid
surrogate-specific optima and saddle points that may hinder trans-
ferability (e.g., [7, 45, 47]). Others employ specialized losses, such as
reducing the variance of intermediate activations [18] or the mean
loss of model ensembles [27], to enhance transferability. Lastly, a
prominent family of attacks leverages data augmentation to en-
hance AEs’ generalizability between models. For instance, Dong
et al. boosted transferability by integrating random translations
into I-FGSM [8]. Evasion attacks incorporating data augmentation
attain state-of-the-art transferability rates [26, 45, 46]. Nonetheless,
prior work has only considered a restricted set of four augmenta-
tion methods for boosting transferability (see §3.1). By contrast, we
investigate augmentations’ role at enhancing transferability more
systematically, by exploring how a more comprehensive set of aug-
mentation types and their compositions affect transferability. Some
efforts explored how augmentation methods used during training
affect transferability [28, 59]. Unlike these, we study augmentations’
role in boosting transferability when incorporated into attacks.

Defenses Various defenses were proposed to mitigate evasion at-
tacks. Adversarial training—a procedure integrating correctly la-
beled AEs in training—is of the most effective methods for enhanc-
ing adversarial robustness (e.g., [12, 43]). Other defense methods
sanitize inputs prior to classification (e.g., [14]); attempt to detect
attacks (see [42]); or seek to certify robustness in 𝜖-balls around in-
puts (e.g., [4, 33]). Following standard practices in the literature [46],
we evaluate transferability-based attacks against a representative
set of these defenses.

3 Data Augmentations for Transferability

Data augmentation is traditionally used in training, to reduce over-
fitting and improve generalizability [35]. Inspired by this use, transfe-
rability-based attacks adopted data augmentation to limit overfit-
ting to surrogate models and produce AEs likely to generalize and
be misclassified by victim models. Alg. 1 presents a general frame-
work for integrating data augmentation into I-FGSM with momen-
tum (MI-FGSM) [7]. In the framework, a method 𝐷 (·) augments
the attack with𝑚 variants of the estimated AE at each iteration.
Consequently, the adversarial perturbation found by the attack
increases the expected loss over transformed counterparts of the
benign sample 𝑥 (i.e., the distribution set by 𝐷 (·) given 𝑥 ).

The framework in Alg. 1 is flexible, and can admit any augmen-
tation method. We use it to describe previous attacks employing
augmentations and to systematically explore new ones. Next, we
detail previous attacks, describe augmentation methods we adopt
for the first time to enhance transferability, and explain how these
can be combined for best performance.

3.1 Previous Attacks Leveraging Augmentations

Prior work explored the following augmentation methods (to set
𝐷 (·) in Alg. 1).
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Algorithm 1MI-FGSM with augs.

1: Input: Sample 𝑥 ; label 𝑦; loss 𝐽 (·); model params. 𝜃 ; # iters.
𝑇 ; momentum 𝜇; norm-bound 𝜖; method 𝐷 (·) producing 𝑚

augmented samples; step size 𝛼 .
2: 𝛼 = 𝜖/𝑇
3: 𝑥0 = 𝑥

4: 𝑔0 = 0
5: for 𝑡 = 0 to 𝑇 − 1 do

6: 𝑔𝑡+1 = 1
𝑚

∑𝑚−1
𝑖=0 ∇𝑥 (𝐽 (𝐷 (𝑥𝑡 )𝑖 , 𝑦, 𝜃 ))

7: 𝑔𝑡+1 = 𝜇 · 𝑔𝑡 + 𝑔𝑡+1
∥𝑔𝑡+1 ∥1

8: 𝑥𝑡+1 = Proj𝜖𝑥
(
𝑥𝑡 + 𝛼 · sign (𝑔𝑡+1)

)
9: end for

10: return 𝑥 = 𝑥𝑇

Translations Using random translations of inputs, Dong et al.
proposed a translation-invariant attack to promote transferabil-
ity [8]. They also offered an optimization to reduce the attack’s
time and space complexity by convolving the model’s gradients
(w.r.t. non-translated inputs) with a Gaussian kernel. While we use
this optimization in the implementation in the interest of efficiency,
we highlight that Alg. 1 can capture the attack.

Diverse Inputs Xie et al. proposed a size-invariant attack. Their
augmentation randomly crops 𝑥𝑡 and resizes crops per the model’s
input dimensionality [51].

Scaling Pixels Lin et al. showed that adversarial perturbations in-
variant to scaling pixel values transfer with higher success between
deep neural networks (DNNs) [26]. In their case, 𝐷 (·) produces𝑚
samples such that 𝐷 (𝑥)𝑖 = 𝑥

2𝑖 for 𝑖 ∈ {0, 1, ...,𝑚 − 1}, where𝑚=5
by default.

Admix Wang et al. assumed that the adversary has a gallery of
images from different classes and adopted augmentations similar
to MixUp [46, 57]. For each sample 𝑥 ′ from the gallery (typically
selected at random from the batch), Admix augments attacks with
𝑚 (typically set to 5) samples, such that 𝐷 (𝑥, 𝑥 ′)𝑖 = 1

2𝑖 · (𝑥𝑡 +𝜂 ·𝑥
′),

where 𝑖 ∈ {0, 1, ...,𝑚 − 1}, and 𝜂 ∈ [0, 1] is set to 0.2 by default.
Notably, Admix degenerates to scaling pixels when 𝜂 = 0.

Uniform Noise (UN) Li et al. added uniform noise to samples to
produce uniform-noise-invariant attacks with enhanced transfer-
ability [25].

Dropping Patches (DP) Li et al. and Wang et al. divided perturba-
tions into (16×16) grids and randomly sampled parts of the grid to
drop [25, 48].

Leading transferability-based attacks compose (1) diverse inputs,
scaling, and translations (Lin et al.’s DST attack [26], and Wang et
al.’s VMI-DST attack that also tunes the gradients’ variance [45]);
or (2) Admix, diverse inputs, and translation (Wang et al.’s Admix-
DT attack [46]); or (3) uniform noise, dropping patches, diverse
inputs, and translations (Li et at.’s UNDP-DT [25]). We consider
these attacks as baselines in our experiments (§5–6).

3.2 New Augmentations for Boosting

Transferability

While prior work studied the effect of some data-augmentation
methods’ effect on transferability, a substantially wider range of
data-augmentation methods exist. Yet, the impact of these on trans-
ferability remains unknown. To fill the gap, we examined Shorten
et al.’s survey on data augmentation [35] as well as two prominent
image-augmentation libraries [20, 32] for reducing overfitting in
deep learning to identify a comprehensive set of augmentation
methods that may boost transferability. Overall, we identified 46
representativemethods of seven categories to evaluate.We present a
representative subset of augmentations per category below; App. A
lists the remaining augmentations.

Color-space Transformations Potentially the simplest augmen-
tation types are those applied in color-space. Given images rep-
resented as three-channel tensors, methods in this category ma-
nipulate pixel values only based on information encoded in the
tensors. We evaluate 12 color-space transformations. Among them,
we consider color jitter (CJ), which applies random color manipula-
tions [49]. Specifically, we consider random adjustments of pixel
values within a pre-defined ranges of hue, contrast, saturation, and
brightness. Additionally, we consider greyscale (GS) augmentations.
This simple augmentation converts images into greyscale (replicat-
ing it three times to obtain an RGB representation). Mathematically,
the conversion is calculated by 𝜔𝑅 · 𝑥𝑅 +𝜔𝐺 · 𝑥𝐺 +𝜔𝐵 · 𝑥𝐵 , where
𝑥𝑅 , 𝑥𝐺 , and 𝑥𝐵 , correspond to the RGB channels, respectively, and
𝜔𝑅 , 𝜔𝐺 , and 𝜔𝐵 , all ∈ [0, 1], denote the channel weights, and sum
up to 1.

RandomDeletion Different from DP, which drops random regions
from perturbations, we consider random deletions of input samples’
regions, replacing them with others values. For example, inspired
by dropout regularization, random erasing (RE) helps ML models
focus on descriptive features of images and promote robustness to
occlusions [60]. To do so, randomly selected rectangular regions
in images are replaced by masks composed of random pixel values.
Similarly to RE, CutOut masks out regions of inputs to improve
DNNs’ accuracy [6]. The main difference from RE is that CutOut
uses fixed masking values, and may perform less aggressive mask-
ing when selected regions lie outside the image.

Kernel Filters Convolving images with filters of different types
can produce certain effects, such as blurring (via Gaussian kernels),
sharpening (via edge filters), or edge enhancement. We study the
effect of 13 filters on transferability, including edge-enhancement
via sharpening (Sharp).

Mixing Images Some augmentation methods (e.g., Admix) fuse
images together. We consider CutMix, which replaces a region
within one image with a region from another image picked from a
gallery [55].

Style Transfer Certain augmentations change the image style. We
study six of these in this work. Among the six, we also consider
augmentations using neural transfer (NeuTrans) to preserve image
semantics while changing their style. Specifically, we use [11]’s
generative model to transfer image styles to that of Picasso’s 1907
self-portrait.
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Meta-learning-inspired Augmentations Meta-learning is a sub-
field ofML studying howML algorithms can optimize other learning
algorithms [16]. In the context of data augmentation, algorithms
such as AutoAugment have been proposed to train controllers to
select an appropriate augmentation method to avoid overfitting [5].
We use the pre-trained AutoAugment controller, encoded as a re-
current neural network, to select augmentation methods and their
magnitude from a set of pre-defined augmentation methods.

Spatial Transformations Augmentations performing spatial trans-
formations alter the locations of pixels in the image. Random trans-
lation and resizing (§3.1) belong to this category. We consider seven
additional augmentations that perform spatial transformation, in-
cluding random rotations, affine transformations, and horizontal
flipping.

3.3 Composing Augmentations

There exist two ways to compose data-augmentation methods in
attacks, namely: parallel and serial composition. In parallel compo-
sition, each augmentation method is applied independently on the
input, and their outputs are aggregated by taking their union as
𝐷 (·)’s output to augment attacks. By contrast, serial composition
applies augmentations sequentially, one after the other, where the
first method operates on the original sample, and each subsequent
augmentation operates on its predecessor’s outputs. Consequently,
serial composition leads to an exponential growth in the number of
samples, while parallel composition leads to a linear growth. All
baselines we consider in this work [25, 26, 45, 46] employ serial com-
position, as this is the only composition method previously used.
Compared to prior work, we consider a substantially larger number
of augmentation methods, which may lead to prohibitive memory
and time requirements in the case of serial composition. Addition-
ally, because the order of applying certain augmentations matters
(e.g., GS then CutMix leads to different outcome that CutMix fol-
lowed byGS), exploring ameaningful number of serial compositions
(e.g., out of ≥46! possibilities) becomes virtually impossible. More-
over, serial composition of images may distort images drastically,
thus degrading transferability, as we find (§6.5). Accordingly, we
mainly consider parallel composition between data-augmentation
methods. We only serially compose translations, scaling, and di-
verse inputs, for consistency with prior work (e.g., [46]).

3.4 Discovering Effective Compositions

We use two approaches to discover augmentation compositions
that promote transferability. As a simple, yet effective method, we
employ exhaustive search on a small set of augmentations. We note
that, while Li et al. considered a similar approach [25], they only
(1) evaluated augmentations previously established as conducive
transferability, as opposed the the new augmentations we incorpo-
rate; and (2) tested serial compositions of augmentations, which we
find to perform worse than parallel composition (§6.5). Exhaustive
search enabled us to uncover a roughly monotonic relationship
between augmentations and transferability (§6.2). Additionally, we
apply genetic search over the full set of augmentations. Here, in-
formed by the roughly monotonic relationship between augmen-
tations and transferability, we bias the search hyperparameters

toward including augmentations within combinations to speed up
convergence toward combinations boosting transferability.

Exhaustive Search A straightforward approach to find a set of
augmentations that promote transferability when combined is to
exhaustively evaluate all possible combinations. On the one hand,
this approach is guaranteed to find the combination that advances
transferability the most, and enables us to precisely characterize
the relationship between augmentations and transferability—e.g.,
whether transferability is monotonic in the number of augmenta-
tions included. However, it would be infeasible to exhaustively test
all possible combinations included in the power set of all augmen-
tations we consider in this work. Hence, as a middle ground, we
evaluate exhaustive search with a representative, well-performing
augmentation method per data-augmentation category.

Genetic Search As an efficient alternative for exhaustive search,
we employ genetic search—a commonly used optimization tech-
nique suitable for large, discrete search spaces [21]. Genetic search
algorithms seek to simulate biological evolution processes to find
near-optimal solutions. Instead of evaluating the entire search space,
genetic search begins with an initial population sampled from the
search space. Subsequently, the algorithm selects the fittest individu-
als from the population and applies crossover and mutation actions
between them to produce a generation that should score higher on
the fitness objective one aims to optimize. Once the fitness value of
the best-performing individuals converges or a maximum number
of iteration is reached, the search ends and the best performing
individual is returned.

In this work, we seek to search over a population of augmen-
tation combinations to maximize transferability (i.e., the fitness
function). To this end, starting with a population of containing sev-
eral combinations, we evaluate the transferability rate achievable
via each combination. Next, to produce the next generation, we
select the fittest combinations with the highest transferability rates
at random, with replacement, to act as ancestors, while maintaining
the population size. The probability for selecting each combination
is equal to the ratio between its fitness and the total fitness of all
combinations in the population. Then, for each selected combina-
tion, with probability 𝑝cross we perform crossover with another
combination chosen at random from combinations that passed se-
lection. If no crossover occurs, we pass the combination as is to the
next generation after performing mutation. In crossover, we select
(resp. exclude) an augmentation if it is included (resp. excluded)
in both ancestors, and select whether to include the augmentation
at random when it is included in one ancestor but excluded in
the other. Subsequently, we perform mutations, removing (resp.
inserting) and augmentation that is included (resp. removed) with
probability 𝑝mutate . We stop the process after 𝑛gen search iterations.

As exhaustive search demonstrated a roughly monotonic re-
lationship between augmentations and transferability (§6.2), we
biased the genetic search toward including augmentations to speed
up convergence to highly-performing combinations. More precisely,
we selected an initial population with probability of 𝑝aug >50% to
include each augmentation in a combination. Thus, augmentation
combinations in the initial and subsequent populations had higher
likelihood to include augmentations than exclude them.
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Genetic search is not guaranteed to converge to the optimal
combinations as long as we have not covered the entire search space.
Still, we find that, for small search spaces, genetic search quickly
discovers combinations that attain roughly as high transferability
rates as the best combination found by exhaustive search (§6.4).
After identifying the genetic-search hyperparameters that work
well for small search spaces, we apply genetic search to the large
search space containing all augmentations. Doing so enables us to
identify a combination of augmentations attaining state-of-the-art
transferability rates when composed (§6.3).

4 Theoretical Analysis of Augmentations

Before turning to empirical evaluations, we theoretically analyze
why augmentations can boost transferability. Specifically, we ex-
plore how augmentations affect the gradients attacks leverage to
improve our understanding of how they help AEs generalize from
surrogates to targets. Our analysis shows that certain augmenta-
tions smoothen the model gradients (i.e., lead gradients to be more
consistent across attack iterations). Intuitively, in return, this may
limit the effect of surrogate peculiarities (e.g., surrogate-specific
changes in the classification boundaries) on the attack, and increase
AEs’ generalization. By contrast, when gradients are sensitive to
surrogates’ peculiarities, they are likely to change drastically within
small regions of input domains (e.g., across attack iterations), hin-
dering transferability to target models. Our experiments (§6.7) em-
pirically support the theoretical analysis and intuition.

Adapting proof techniques from randomized smoothing [4, 33],
we show that Gaussian noise helps smoothen gradients. Subse-
quently, we extend the result to a more general set of augmentation
methods, showing that gradients can be smoothened by augmenting
attacks with additive noise sampled from smooth distributions—i.e.,
distributions that do not exhibit sharp changes in their density
within small regions.

Gaussian-Noise Augmentations Prior work has shown that aug-
menting inference with Gaussian noise, a technique known as
randomized smoothing, leads to estimating a smooth function with
a bounded Lipschitz constant (i.e., maximum rate of change in the
region the function is defined) [4, 33]. Differently from prior work,
instead of augmenting inference, ours augments the derivative (i.e.,
gradient estimates). We demonstrate that when using Gaussian
noise for data augmentation, the derivative becomes smooth. More
formally, we show that the derivative’s Lipschitz constant becomes
bounded. Moreover, we demonstrate that the smoother, less peaky,
the Gaussian distribution becomes, the smaller is the derivative’s
Lipschitz constant and the smoother is the derivative.

For a sample and label pair (𝑥,𝑦), we denote the loss derivative
as 𝑓 (𝑥) = ∇𝑥 𝐽 (𝑥,𝑦, 𝜃 ). Let 𝐼 be the Lipschitz constant of 𝐽 (𝑥,𝑦, 𝜃 )
(i.e., the surrogate’s loss). Note that 𝐼 is typically bounded for DNNs
and can be approximated via numerical analysis techniques [44].
Our first theoretical result shows that 𝑓 , a variant of 𝑓 augmented
with noise sampled from a zero-mean Gaussian distribution with
an identity covariance matrix 𝐸 (i.e., noise drawn from N(0, 𝐸)), is
smooth, with a Lipschitz constant of 𝐼 ·

√︃
2
𝜋 .

Theorem 4.1. 𝑓 , attained by augmenting ∇𝑥 𝐽 (𝑥,𝑦, 𝜃 ) with noise

drawn from N(0, 𝐸), is 𝐼 ·
√

2√
𝜋
-Lipschitz, where 𝐼 is the Lipschitz

constant of 𝐽 (𝑥,𝑦, 𝜃 ).

Proof. Augmenting 𝑓 with Gaussian noise, drawn fromN(0, 𝐸),
results in the so-called Weierstrass transform of 𝑓 [33]:

𝑓 (𝑥) = (𝑓 ∗ N (0, 𝐸)) (𝑥)

=
1

(2𝜋)𝑛/2

∫
𝑅𝑛

𝑓 (𝑡) exp
(
−1

2
∥𝑥 − 𝑡 ∥2

)
𝑑𝑡

=

∫
𝑅𝑛

𝑓 (𝑡) 1
(2𝜋)𝑛/2 exp

(
−1

2
∥𝑥 − 𝑡 ∥2

)
𝑑𝑡

=

∫
𝑅𝑛

∇𝑥 (𝐽 (𝑡, 𝑦, 𝜃 )) 1
(2𝜋)𝑛/2 exp

(
−1

2
∥𝑥 − 𝑡 ∥2

)
𝑑𝑡

where 𝑡 is obtained after adding noise to 𝑥 .

It suffices to show 𝑢 · ∇𝑓 (𝑥) ≤ 𝐼 ·
√︃

2
𝜋 . holds for any unit vector

𝑢. Note that:

∇𝑓 (𝑥) = 1
(2𝜋)𝑛/2

∫
𝑅𝑛

𝑓 (𝑡) (𝑥 − 𝑡) exp
(
−1

2
∥𝑥 − 𝑡 ∥2

)
𝑑𝑡 .

Thus, using |𝑓 (𝑡) | ≤ 𝐼 , we get:

𝑢 ·∇𝑓 (𝑥) ≤ 1
(2𝜋)𝑛/2

∫
𝑅𝑛
|𝐼 ·𝑢 · (𝑥 − 𝑡) | exp

(
−1

2
∥𝑥 − 𝑡 ∥2

)
𝑑𝑡

=
𝐼

√
2𝜋

∫ +∞

−∞
|𝑠 | exp

(
−1

2
𝑠2
)
𝑑𝑠 = 𝐼 ·

√︂
2
𝜋
.

□

This theorem shows that augmenting noise sampled fromN(0, 𝐸)
bounds the gradients’ maximum rate of change, making them
smooth. The next theorem generalizes the result, showing that
augmenting noise sampled from an isotropic Gaussian distribution,
N(0, 𝜎𝐸), leads to smoother gradients the larger is 𝜎 . Said differ-
ently, when the distribution is less peaky, the Lipschitz constant of
the 𝑓 , the augmented variant of the derivative, 𝑓 , becomes smaller.

Theorem 4.2. 𝑓 , attained by augmenting ∇𝑥 𝐽 (𝑥,𝑦, 𝜃 ) with noise

drawn from isotropic Gaussian distribution, N(0, 𝜎𝐸), is 𝐼 ·
√

2√
𝜋𝜎2 -

Lipschitz, where 𝐼 is the Lipschitz constant of 𝐽 (𝑥,𝑦, 𝜃 ).

Proof. It suffices to show 𝑢 · ∇𝑓 (𝑥) ≤ 𝐼 ·
√

2√
𝜋∗𝜎2 holds for any

unit vector 𝑢. Note that:

𝑓 (𝑥) =
(
𝑓 ∗ N

(
0, 𝜎2

))
(𝑥)

=
1

(2𝜋)𝑛/2 ∗ 𝜎

∫
𝑅𝑛

𝑓 (𝑡) exp
(
−1

2
∥𝑥 − 𝑡 ∥2/𝜎2

)
𝑑𝑡

=

∫
𝑅𝑛

𝑓 (𝑡) 1
(2𝜋)𝑛/2/𝜎

exp
(
−1

2
∥𝑥 − 𝑡 ∥2/𝜎2

)
𝑑𝑡

=

∫
𝑅𝑛

∇𝑥 (𝐽 (𝑡, 𝑦, 𝜃 ))
1

(2𝜋)𝑛/2 ∗ 𝜎
exp

(
−1

2
∥𝑥 − 𝑡 ∥2/𝜎2

)
𝑑𝑡 .

Thus, if we compute the derivative of 𝑓 (𝑥), we would get:

∇𝑓 (𝑥) = 1
(2𝜋)𝑛/2 ∗ 𝜎3

∫
𝑅𝑛

𝑓 (𝑡) (𝑥 − 𝑡) exp
(
−1

2
∥𝑥 − 𝑡 ∥2/𝜎2

)
𝑑𝑡
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Now, using |𝑓 (𝑡) | ≤ 𝐼 , we get:

𝑢 · ∇𝑓 (𝑥) ≤ 1
(2𝜋)𝑛/2 ∗ 𝜎3

∫
𝑅𝑛
|𝐼 · 𝑢 · (𝑥 − 𝑡) | exp

(
−1

2
∥𝑥 − 𝑡 ∥2/𝜎2

)
𝑑𝑡

=
𝐼

√
2𝜋 ∗ 𝜎3

∫ +∞

−∞
|𝑠 | exp

(
−1

2
𝑠2/𝜎2

)
𝑑𝑠

=
2𝐼

√
2𝜋 ∗ 𝜎3

∫ +∞

0
𝑠 exp

(
−1

2
𝑠2/𝜎2

)
𝑑𝑠

=
2𝐼

√
2𝜋 ∗ 𝜎3

∫ +∞

0

1
2

exp
(
−1

2
𝑠2/𝜎2

)
𝑑𝑠2

=
2𝐼

√
2𝜋 ∗ 𝜎3

∫ +∞

0

1
2

exp
(
−1

2
𝑥/𝜎2

)
𝑑𝑥

(
where 𝑥 = 𝑠2

)
=

2𝐼
√

2𝜋 ∗ 𝜎3
∗
(
−𝜎 ∗ exp

(
−1

2
𝑥/𝜎2

))����∞
0

= 𝐼 ·
√

2
√
𝜋 ∗ 𝜎2 .

□

This theorem demonstrates that, when augmenting noise sam-
pled from an isotropic Gaussian distribution, we can smoothen the
derivative, decreasing gradients’ rate of change, by increasing 𝜎 .
In return, the gradient estimates would become more consistent
across attack iterations. This, we expect, renders the surrogate’s
peculiarities less likely to impact AEs, increasing the likelihood of
generalization to the target.

Additive Noise from Smooth Distributions We extend the the-
oretical results, showing that we can smoothen 𝑓 if we augment
inputs with additive noise sampled from a smooth distribution 𝑔(·).
Intuitively, a distribution 𝑔(·) is smooth if it does not exhibit sharp
changes in its density within small regions. Formally, for a constant
𝐴, we define a distribution 𝑔 as smooth if |

∫
𝑅𝑛 ∇𝑥𝑔(𝑡 − 𝑥)𝑑𝑡 | ≤ 𝐴,

where 𝑡 is obtained by adding noise sampled from 𝑔 to 𝑥 . For ex-
ample, for an isotropic Gaussian distribution, it can be shown that
𝐴 =

√
2√

𝜋𝜎2 . Given this definition, we generalize the previous theo-

retical results, and show that the Lipschitz constant of 𝑓 , obtained
by adding noise sampled from 𝑔 to 𝑓 , is bounded.

Theorem 4.3. 𝑓 , attained by augmenting ∇𝑥 𝐽 (𝑥,𝑦, 𝜃 ) with noise
drawn from a distribution 𝑔, such that |

∫
𝑅𝑛 ∇𝑥𝑔(𝑡 − 𝑥)𝑑𝑡 | ≤ 𝐴, is

𝐼 · 𝐴-Lipschitz, where 𝐼 is the Lipschitz constant of 𝐽 (𝑥,𝑦, 𝜃 ).

Proof. Again, it suffices to show 𝑢 · ∇𝑓 (𝑥) ≤ 𝐼 · 𝐴. holds for
any unit-norm vector 𝑢. Note that:

𝑓 (𝑥) = 𝑓 ∗ 𝑔(𝑥) =
∫
𝑅𝑛

𝑓 (𝑡)𝑔(𝑡 − 𝑥)𝑑𝑡

Thus:

𝑢 · ∇𝑓 (𝑥) =
∫
𝑅𝑛

𝑓 (𝑡) · 𝑢 · ∇𝑡𝑔(𝑡 − 𝑥)𝑑𝑡

≤ |
∫
𝑅𝑛

𝑓 (𝑡) · 𝑢 · ∇𝑡𝑔(𝑡 − 𝑥)𝑑𝑡 | ≤
∫
𝑅𝑛

|𝑓 (𝑡) · 𝑢 | · |∇𝑡𝑔(𝑡 − 𝑥) |𝑑𝑡

≤
∫
𝑅𝑛

𝐼 · |∇𝑡𝑔(𝑡 − 𝑥) |𝑑𝑡 ≤ 𝐼 |
∫
𝑅𝑛

∇𝑥𝑔(𝑡 − 𝑥)𝑑𝑡 | = 𝐼 · 𝐴

□

This theorem demonstrates that there exist data augmentations
other than Gaussian noise that can enable us to obtain a smooth 𝑓 .
While we cannot ascertain that all augmentations we use satisfy

the pre-conditions necessary for the theorem to hold (i.e., smooth
distribution 𝑔), we find that, in practice, the augmentations we use
lead to smoother gradient estimates (§6.7). In return, we also find
that these augmentations help boost transferability.

5 Experimental Setup

Now we present the experimental setup. Our code is publicly avail-
able [56].

Data We used an ImageNet-compatible dataset [13] and CIFAR-
10 [22] for evaluation, per common practice (e.g., [8, 53]). The
former contains 1K 224×224 dimensional images pertaining to 1K
classes, originally collected for the NeurIPS 2017 adversarial ML
competition. For the latter, we sampled 1K 32×32 dimensional test-
set images, roughly balanced between the dataset’s ten classes. As
the findings across datasets are consistent, we present detailed
results primarily on ImageNet.

Models We used 18 DNNs to transfer attacks from (as surrogates)
and to (as targets)—six for CIFAR-10 and 12 for ImageNet. To fa-
cilitate comparison with prior work, we included models widely
used for testing transferability (e.g., [46, 53]). Furthermore, to en-
sure our findings are general, we included models covering varied
architectures, including Inception, ResNet, VGG, DenseNet, Mo-
bileNet, ViT, and NASNet. Of the 12 ImageNet models, eight were
normally trained and four were adversarially trained. Specifically,
for normally trainedmodels, we selected: Inc-v3 [39]; Inc-v4; IncRes-
v2 [37]); Res-50; Res-101; Res-152 [15]; MNAS [41]; and ViT [9]. For
adversarially trained models, we used: Inc-v3adv [23]; Inc-v3ens3 ;
Inc-v3ens4 ; and IncRes-v2𝑒𝑛𝑠 [43]. All six CIFAR-10 DNNs were
normally trained. For this dataset, we used pre-trained VGG [36];
Res [15]; DenseNet [17];MobileNet [34]; GoogleNet [38]; and Inc [39].
We obtained the models’ PyTorch implementations and weights
from public GitHub repositories [31, 32, 54].

Attacks We tested standard attack configurations and validated
findings with varied perturbation norms, similar to prior work [46,
53]. Namely, we evaluated untargeted MI-FGSM-based attacks,
bounded in ℓ∞-norm. For ImageNet, unless stated otherwise, we
tested 𝜖 = 16

255 , but also experimented with 𝜖 ∈ { 8
255 ,

24
255 } (App. D).

For CIFAR-10, we experimented with 𝜖 ∈ {0.02, 0.04}. We quan-
tified attack success via transferability rates—the percentages of
attempts at which AEs created against surrogates were misclassified
by targets. As baselines, we used four state-of-the-art transferability-
based attacks: Admix-DT, DST, VMI-DST, and UNDP-DT (see §3.1).
App. B reports the parameters used in attacks and augmentation
methods. Besides the four state-of-the-art baselines we tested, we
considered including other recent attacks in the evaluation [18, 50,
58]. However, these either lacked publicly available implementa-
tions [50, 58], or achieved uncompetitive transferability rates in
our experiments [18].

6 Experimental Results

We start by evaluating individual augmentation methods and stan-
dard combinations with scaling, diverse inputs, and translations
(§6.1). We then turn to analyzing all possible compositions between
a representative subset of augmentation types via exhaustive search
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to assess whether transferability typically improves when consid-
ering more augmentations (§6.2). Next, we present the results of
genetic search (§6.3). In §6.4, we report evaluate UltCombBase—the
best combination found by exhaustive search—and UltCombGen—
the best combination found by genetic search—including on de-
fended models, and provide comparisons with the baselines attacks.
We then compare parallel and serial composition, showing the
former improves transferability (§6.5), before turning to attack run-
times (§6.6). Last, we provide empirical support to the theoretical
results presented in §4 (§6.7).

6.1 Individual Augmentations

Initially, we evaluated transferability integrating a single augmen-
tation at a time in attacks, or when composing individual augmen-
tations with leading augmentations proposed in prior work [25, 26,
46]—namely, diverse inputs, scaling, and translation (DST). To this
end, we selected ten augmentations to represent augmentations
categories (Tab. 1). We found that considering each of the ten aug-
mentations individually does not lead to competitive performance
with the baselines. However, composing individual augmentations
with DST enhanced transferability markedly. Tab. 1 shows trans-
ferability rates on ImageNet. Surprisingly, simple augmentations
in color-space fared particularly well, outperforming most base-
lines and all advanced augmentation methods (e.g., AutoAugment)
in most cases. Particularly, Composing GS with DST (GS-DST at-
tack) performed best in this setting, outperforming all baselines but
VMI-DST. GS-DST attained strong results when target models were
either normally or adversarially trained (Tabs. 2–3), with different
𝜖s, and on CIFAR-10.

6.2 Exhaustive Search

We wanted to evaluate whether transferability is monotonic in
the number of augmentation types—i.e., whether composing more
techniques increases or, at least, preserves transferability. To this
end, we ran exhaustive search (§3.4) over augmentations covering
all categories and assessed the effect of composing more augmen-
tations on transferability. Note, however, that running exhaustive
search with the 46 augmentations we consider as well as DST and
Admix (i.e., a total of 48 augmentation methods) would be prohibi-
tive. Thus, we selected the best performing augmentation method
of each of the seven categories (Tab. 1) and DST, and evaluated all
27 (=128) possible compositions (per §3.3). Specifically, we tested
every possible combination of GS, CutOut, Sharp, NeuTrans, Au-
toAugment, Admix, and DST. Given a composition, we produced
AEs against the Inc-v3 ImageNet DNN, and computed the expected
transferability rate against remaining ImageNet DNNs. Then, for ev-
ery pair of attacks differing only in whether a single augmentation
method was incorporated in the composition, we tested whether
adding the augmentation method improved transferability.

The results showed a mostly monotonic relationship between
transferability and augmentations. Except for NeuTrans and Sharp,
which sometimes harmed transferability, composing more augmen-
tation methods increased or preserved transferability. I.e., with a
few exceptions, augmentation compositions containing a superset
of augmentations compared to other compositions typically had
larger or equal transferability. Notably, comparing all compositions

enabled us to find that a composition of all seven augmentation
methods except for NeuTrans attained the best transferability. We
call this composition UltCombBase.

6.3 Genetic Search

While we considered a more comprehensive set of augmentations
than prior work to construct UltCombBase, this set was still rela-
tively restricted. To discover combinations that advance transfer-
ability further while taking all augmentations into account, we ran
genetic search (§3.4). Initially, to set the genetic search hyperparam-
eters and find how close to optimal are the combinations found by
genetic search, we ran it on the set of seven augmentations tested
with exhaustive search. Specifically, we varied the number of gen-
erations (𝑛gen) and population sizes in genetic search and measured
(1) the fraction of the search space that would be covered by genetic
search compared to exhaustive search; and (2) the ratio between
the average transferability rates attained by the fittest combina-
tion found by genetic search and the optimal combination included
in UltCombBase. Our aim was to find whether genetic search is
capable of discovering augmentation combinations that achieve
nearly as high transferability as exhaustive search (i.e., maximizing
the second metric) while searching a small fraction of the search
space (i.e., minimizing the second metric). We repeated the exper-
iment 100 times, using Inc-v3 as a surrogate and the remaining
ImageNet models as targets. Because we tested all augmentation
combinations in exhaustive search, we did not need to reproduce
AEs when running genetic search. After hyperparameter sweep, we
set 𝑝cross=60%, 𝑝mutate=10%, and 𝑝aug=55% for best performance.

The results showed that with as litts as 𝑛gen=2 and population
size of 20, it is possible to find compositions attaining >99% of
UltCombBase’s transferability rates. Accordingly, using these hy-
perparameters, we ran genetic search on all 46 augmentations we
considered for the first time to boost transferability, as well as DST
and Admix, for a total of 48 augmentation techniques. Again, we
selected Inc-v3 as a surrogate and the remaining ImageNet models
as targets. The search process found a combination of 33 augmen-
tations that achieved the highest transferability (see App. C for the
complete list). We refer to the resulting attack composing all 33
combinations by UltCombGen.

6.4 The Most Effective Combinations

We evaluated the transferability of AEs produced by composing the
augmentations found via exhaustive and genetic search (UltCombBase
and UltCombGen, respectively) extensively, testing transferabil-
ity to normally and adversarially trained DNNs, various defenses,
and commercial systems. Additionally, we also explored the role of
the number of augmented images (sample size) and augmentation
methods for boosting transferability.

Normally andAdversarially Trained Targets TheUltCombBase
obtained higher transferability to normally trained models than the
baselines (89.6% vs. ≤85.0% avg. transferability; Tab. 2). This held
across different values of 𝜖 (Tab. 8 in App. D), and on the CIFAR-
10 dataset with different architectures. UltCombGen, composing
more augmentations, reached even higher transferability rates, with
92.6% average transferability rate to normally trained models on
ImageNet.
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Table 1: Avg. transferability (%) on ImageNet from Inc-v3 to all other models when integrating individual augmentations

composed with DST. A vertical line separates the baselines. from our attacks.

Attack Admix-DT DST VMI-DST UNDP-DT CS-DST CJ-DST fPCA-DST
Avg. 80.6 81.8 88.8 79.8 84.8 85.9 83.5

Attack (cont.) GS-DST RE-DST CutMix-DST CutOut-DST NeuTrans-DST Sharp-DST AutoAugment-DST
Avg. (cont.) 87.0 84.9 54.0 84.1 73.5 80.1 82.9

Table 2: Average transferability (%) of black-box attacks on ImageNet, from all surrogates to normally and adversarially trained

targets. A vertical line separates the baselines from our attacks.

Targets Admix-DT DST VMI-DST UNDP-DT GS-DST UltCombBase UltCombGen

Normally trained 79.7 82.1 82.9 85.0 86.2 89.6 92.6

Adversarially trained 78.2 77.4 82.5 65.4 83.1 85.3 91.8

Table 3: Transferability (%) on ImageNet, from an ensemble of normally trained surrogates (incl. Inc-v4, Res-50, Res-101 and

Res-152) to adversarially trained targets. A vertical line separates the baselines from our attacks.

Model Admix-DT DST VMI-DST UNDP-DT GS-DST UltCombBase UltCombGen

Inc-v3𝑎𝑑𝑣 89.3 89.1 92.8 88.2 92.6 93.2 96.2

Inc-v3𝑒𝑛𝑠3 90.0 89.6 93.8 90.6 93.5 95.4 96.3

Inc-v3𝑒𝑛𝑠4 89.0 87.8 93.1 86.1 92.3 93.4 96.4

IncRes-v2𝑒𝑛𝑠 84.8 83.4 90.1 75.5 88.6 91.1 94.6

Furthermore, UltCombBase and UltCombGen achieved the high-
est performance also when transferring attacks to adversarially
trained DNNs (Tab. 2; 85.3% and 91.8% avg. transferability for
UltCombBase and UltCombGen, respectively, compared to ≤82.5%
avg. transferability for the baselines). Transferring AEs crafted us-
ing an ensemble of models increased transferability further (Tab. 3;
respectively, 93.4% and 95.7% avg. transferability for UltCombBase
and UltCombGen). Per a paired t-test, the differences between
UltCombBase and UltCombGen compared to the baselines over
all pairs of surrogates and targets considered were statistically
significant (𝑝-value<0.01).

Additional Defenses Besides adversarially trained models, we
evaluated transferability against five standard defenses. Two de-
fenses, bit reduction (Bit-Red) [52] and neural representation purifi-
cation (NRP) [29], seek to sanitize adversarial perturbations. Two
others, randomized smoothing (RS) [4] and randomized smoothing
with adversarial training (ARS) [33] offer provable robustness guar-
antees. Last, TRS leverages an ensemble of smooth DNNs trained
to have misaligned gradients, to defend attacks [53]. We evaluated
all defenses but TRS on ImageNet. We used the defenses with de-
fault parameters, and transferred AEs crafted against an ensemble
of normally trained models. The results are shown in Tab. 4. Ex-
cept for NRP, where VMI-DST attained the highest performance,
UltCombGen outperformed the baselines by large margins. Follow-
ing [53], we tested TRS on CIFAR-10 with adversarial perturbation
norms 𝜖 ∈ {0.02, 0.04}. UltComb’s variants did best against this
defense as well (Tab. 5).

Commercial System Last, we tested attacks against Google Cloud
Vision to simulate an even more realistic setting where target mod-
els are not publicly available and have been trained on a distinct
training set compared to the surrogate. To estimate transferability,
we classified the benign ImageNet images via Google’s API and
calculated the ratio of AEs that were classified differently than
their benign counterparts. Tab. 6 presents the result. UltCombGen
outperformed all baselines, with 0.8%–9.5% higher transferability
rates.

6.5 Parallel vs. Serial Composition

To corroborate that parallel composition is useful for transferability,
we compared it to the previously established serial composition
of the augmentation methods. In this experiment, we tested the
augmentations included in UltComb and measured transferability
on ImageNet, with Inc-v3 as surrogate and all other models as tar-
gets. The results showed that serial composition led to markedly
lower transferability than parallel composition—26.1% vs. 88.9%
average transferability rates. A potential explanation is that serial
composition deteriorates image quality, significantly dropping the
surrogate’s benign accuracy (e.g., 21.0% vs. 82.4% benign accuracy
on Inc-v3 on augmented images when using serial and parallel
composition, respectively), such that the adversarial directions pro-
duced do not generalize to the target models.

6.6 Attack Run-Times

MI-FGSM’s time complexity is predominated by the gradient com-
putation steps. Accordingly, the attacks’ run times are directly af-
fected by the number of samples the augmentation methods create
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Table 4: Transferability (%) from an ensemble of normally trained surrogates (Inc-v4, Res-50, Res-101 and Res-152) to defended

ImageNet models.

Defense Admix-DT DST VMI-DST UNDP-DT UltCombBase UltCombGen

Bit-Red 88.6 88.2 94.8 94.9 96.0 95.5
NRP 51.0 54.9 80.0 27.9 65.3 55.8
RS 87.3 84.8 90.6 85.5 88.5 95.6

ARS 65.4 62.9 66.5 61.9 67.0 71.9

Table 5: Transferability (%) on CIFAR-10 from a normally trained VGG surrogate to an ensemble of Res DNNs trained via TRS.

Epsilon Admix-DT DST VMI-DST UNDP-DT GS-DST UltCombBase UltCombGen

0.02 23.7 26.6 22.1 24.9 28.2 32.7 46.5

0.04 45.8 46.7 41.9 52.6 52.8 59.4 80.0

Table 6: Transferability (%) on ImageNet from an esemble of normally trained surrogates (Inc-v4, Res-50, Res-101 and Res-152)

to Google Cloud Vision.

Admix-DT DST VMI-DST UNDP-DT UltCombBase UltCombGen

76.2 73.4 72.6 81.3 76.5 82.1

(i.e., samples emitted by 𝐷 (·) in Alg. 1): The more samples emitted
by the augmentationmethod, themore timewould be spent comput-
ing gradients for updating the AEs in each iteration, thus increasing
AEs’ generation time. The empirical measurements corroborate this
intuition (Tab. 7). DST augments MI-FGSM with the least samples
(except for UNDP-DT that runs for 100 iterations) and runs for 10
iterations, leading to the fastest attack (DST). GS-DST is the second
fastest attack, while UltCombBase is slower than Admix-DT but
substantially faster (×2.44) than VMI-DST. UltCombGen augments
attacks with the largest number of samples, thus increasing run time
the most. We note that no particular effort was invested to make
GS-DST, UltCombBase, and UltCombGen more time-efficient (e.g.,
stacking augmented samples for parallel computation, similarly to
Admix-DT). Moreover, since transferability-based attacks generate
AEs offline, and only once per surrogate model, attack run-time is
a marginal consideration for selecting an attack compared to trans-
ferability. Lastly, for improved time efficiency, an adversary with
strict time requirements may consider using a subset of samples
augmented by UltCombGen’s. We found that when sampling 30 of
the 165 augmented images (UltCombGen-30 in Tab. 7), we obtain
an attack ×7.27 faster than UltCombGen with roughly the same
transferability. By contrast, increasing the number of samples in
baseline attacks only slows them down with barely no increase in
transferability.

6.7 Supporting Theory

Our theoretical results show that augmentations often smoothen
the gradients computed by the surrogate, thus decreasing the effect
of the surrogate’s peculiarities on AEs. In turn, this is likely to
lead to improve the generalization of AEs from the surrogate to
target models. Our empirical findings support this theory. Particu-
larly, using the Inc-v3 models as a surrogate, we tested the (cosine)
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Figure 1: The relationship between the similarity between

consecutive gradients computed in attacks and transferabil-

ity rates. Results obtained using Inc-v3 as a surrogate and the

remaining ImageNet models as targets. Gauss-DST refers at-

tacks composing Gaussian noise and DST and uses the same

number of augmented images as UltCombGen. Notice how

UltCombBase and UltCombGen lead to higher similarity

between gradients than most attacks, and how the trans-

ferability rates tend to increase as the gradient similarity

increases.

similarity between gradients throughout attack iterations when
integrating different augmentations into attacks. Additionally, we
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Table 7: The number of samples augmented and the avg. time of crafting an AE per attack. Times were measured on an Nvidia

A5000 GPU, on ImageNet, when attacking an Inc-v3, and averaged for 1K samples. For best transferability rates, UNDP-DT was

run for 100 iterations, while other attacks were run for 10.

Attack Admix-DT DST VMI-DST UNDP-DT GS-DST UltCombBase UltCombGen-30 UltCombGen

Augmented samples 15 5 105 1 10 30 30 165
Time (s) 1.68 0.72 11.29 1.65 1.10 3.62 5.54 40.27

measured the avg. transferability of attacks to the remaining Ima-
geNet models to assess the relationship between smoothness and
transferability. We expected that Gaussian-noise augmentations as
well as compositions of multiple augmentations (as inUltCombBase
and UltCombGen) would lead to smoother gradients, with higher
cosine similarities across attack iterations. Moreover, we antici-
pated that transferability would be higher when the gradients are
smoother. As shown in Fig. 1, both of these expectations held—the
cosine similarities between consecutive gradients were higher for
UltCombBase and UltCombGen than for all other attacks except
for when Gaussian noise is integrated, and the transferability rates
tended to be higher as the cosine similarities increased.We note that
the method integrating Gaussian noise attains the highest cosine
similarities with slightly lower transferability than UltCombBase.
Accordingly, in addition to smoothness, there may be other factors
that can influence transferability. We leave the identification of
these factors for future work.

7 Conclusion

Leveraging a newly proposed means to integrate data augmen-
tations into attacks (i.e., parallel composition) and systematically
studying a broad range of augmentation methods, our work un-
covered a mostly monotonic relationship between augmentations
and transferability. Our approach helped us identify compositions
(UltCombBase and UltCombGen) that outperform prior techniques
integrated into attacks; these should be considered as a standard
baseline in follow-up work on transferability. Our work also puts
forward empirically supported theoretical explanations for why
augmentations help boost transferability.
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A Other Augmentations Studied

Besides the 12 augmentations in §3.2, we considered the following
34 augmentations.

Color-space: (1) K-means color quantization; (2) Jpeg compres-
sion; (3) Voronoi; (4) Random invert; (5) Random posterize; (6) Random
solarize; (7) Random equalize; (8) Superpixels; (9) Guassian noise;
(10) Emboss; (11) fancy PCA (fPCA).

Random Deletion: (1) Dropout; (2) Random crop.
Kernel Filters: (1) Gaussian blur; (2) Average blur; (3) Median

blur ; (4) Bilateral blur ; (5) Motion blur ; (6) MeanShift blur ; (7) Edge
detect; (8) Canny; (9) Average pooling; (10) Max pooling; (11) Min
Poling; (12) Median pooling.

Style Transfer: (1) Clouds; (2) Fog; (3) Frost; (4) Snow; (5) Rain.
Spatial: (1) Random perspective; (2 Elastic transform; (3) Random

vertical flip; (4) Patch shuffle.

B Attack and Augmentation Method

Parameters

Similarly to standard practice [47], we set the MI-FGSM decay
factor 𝜇=1.0 , and attacks’ number of iterations𝑇=10, and their step-
size 𝛼 = 𝜖

𝑇
. The only exception is UNDP-DT found to attain low

transferability rates with these parameters. Therefore, for UNDP-
DT, we use default parameters found to achieve best performance
by Li et al. [25]: 𝑇=100 and 𝛼 = 1

255 .
We mostly used default or commonly used parameters of aug-

mentation methods. For CJ, we performed random adjustments of
image hue ∈ [−0.5, 0.5], contrast ∈ [0.5, 1.5], saturation ∈ [0.5, 1.5],
and brightness∈ [0.5, 1.5]. For CutOut, we replaced values in se-
lected regions with zeros, and the portion of masked areas com-
pared to image dimensions lied in [0.02, 0.4], with aspect ratios
∈ [0.4, 2.5]. In comparison, for RE, the dimension of masked ar-
eas relatively to the image dimensions lied in [0.02, 0.2], with as-
pect ratios ∈ [0.3, 3.3]. For Sharp, we used the following edge-
enhancement mask: 

−0.5 −0.5 −0.5
−0.5 5.0 −0.5
−0.5 −0.5 −0.5

 .
For diverse inputs, images were transformed with probability 0.5.
For the Admix operation, consistently with [46], we randomly sam-
pled three images from other categories for mixing as part of the
Admix-DT attack. However, for the interest of computational effi-
ciency, we use only one image for mixing when composing Admix
with other augmentation methods. We did not find that mixing
with fewer images harmed performance. In fact, it even improved
transferability in some cases. Finally, in CutMix, we picked the top
left coordinate (𝑟𝑥 , 𝑟𝑦), the width, 𝑟𝑤 , and height, 𝑟ℎ , of the region
to be replaced, using the formulas:

𝑟𝑥 ∼ U(0,𝑊 ), 𝑟𝑤 =𝑊
√

1 − 𝜆,

𝑟𝑦 ∼ U(0, 𝐻 ), 𝑟ℎ = 𝐻
√

1 − 𝜆,

where U is the uniform distribution,𝑊 is the image width, 𝐻 is
the image height, and 𝜆 is a parameter set to 0.5.

In an attempt to enhance transferability further, we optimized
the parameters of a few augmentation methods we considered via

https://github.com/huyvnphan/PyTorch_CIFAR10
https://pytorch.org/vision
https://github.com/ylhz/tf_to_pytorch_model
https://github.com/ylhz/tf_to_pytorch_model
https://github.com/yundaqwe/Ultimate-Combo
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Table 8: Transferability rates (%) on ImageNet, from a Inc-v3 surrogate to other normally trained models, with perturbation

norms 𝜖 ∈ { 8
255 ,

24
255 } other than the default 𝜖 = 16

255 .

𝜖 Attack Inc-v3 Inc-v4 Res-152 IncRes-v2 Res-50 Res-101 ViT MNAS Inc-v3𝑎𝑑𝑣 Inc-v3𝑒𝑛𝑠3 Inc-v3𝑒𝑛𝑠4 IncRes-v2𝑒𝑛𝑠 Avg.

8/255

Admix-DT 98.7 75.0 60.6 69.3 68.3 62.7 33.5 67.8 57.6 52.5 51.8 36.1 57.7
DST 99.7 77.1 62.9 70.9 69.8 64.8 34.1 71.1 61.4 55.0 54.7 35.9 59.8
VMI-DST 99.5 80.0 68.1 75.1 74.8 68.9 39.7 74.5 68.6 64.4 64.5 47.7 66.0
UNDP-DT 99.4 92.2 82.4 90.6 85.6 85.1 32.3 86.6 48.7 43.9 40.8 20.3 64.4
GS-DST 99.5 81.3 71.1 77.6 77.3 72.0 37.0 75.4 69.2 63.9 63.9 45.2 66.7
UltCombBase 99.7 86.0 75.0 81.8 81.2 76.3 40.8 82.5 72.7 67.2 64.2 46.2 70.4
UltCombGen 99.7 89.8 80.7 87.1 84.3 81.5 52.6 87.8 80.7 77.3 75.4 58.4 77.8

24/255

Admix-DT 99.9 97.1 93.7 95.9 94.8 94.4 73.4 94.3 87.1 88.6 88.2 79.9 89.8
DST 100.0 97.8 93.6 96.8 95.1 93.9 74.9 95.9 84.6 90.5 89.3 77.2 90.0
VMI-DST 100.0 97.9 95.0 97.1 96.2 95.6 78.4 97.1 89.3 93.2 91.9 84.0 92.3
UNDP-DT 99.8 98.9 97.3 98.9 97.9 98.0 78.8 97.6 84.0 82.9 78.4 59.8 88.4
GS-DST 100.0 98.6 95.7 98.3 96.7 97.0 86.7 97.5 94.5 95.9 94.9 90.4 95.1
UltCombBase 100.0 99.3 97.4 99.2 97.5 98.4 83.8 99.0 92.5 95.1 95.0 86.9 94.9
UltCombGen 100.0 100.0 99.8 100.0 99.6 99.9 94.1 99.5 97.9 99.3 98.4 95.2 98.5

grid search. Except for the Gaussian kernel’s size used in translation-
invariant attacks [8], we found that the selected parameters had
little impact on transferability. Specifically, for translations, after
considering Gaussian kernels of sizes ∈ {5 × 5, 7 × 7, 9 × 9}, we
set the default to 7 × 7, except for Admix-DT, for which the 9 × 9
kernel performed best. The results show that our choice of Admix
parameters (𝑚=1 and Gaussian kernel size of 9 × 9) improves its
performance. For GS, we found 𝜔𝑅 , 𝜔𝐺 , and 𝜔𝐵 had little impact
on transferability, as long as the weight assigned to each channel
was >0.1. Accordingly, we set 𝜔𝑅 , 𝜔𝐺 , and 𝜔𝐵 to 0.299, 0.587, and
0.114, respectively, per commonly used values (e.g., in the Python
PyTorch package1). Finally, for CS, we only swapped the blue and
green channels, as this led to a minor improvement compared to
swapping all three channels.

Finally, we clarify that each of our attack combinations emits the
original image once, alongside the transformed images. Moreover,
when aggregating the gradients, the gradients of the original and
transformed images are assigned equal weights. We tested whether
weighting the gradients differently (e.g., assigning higher or lower

weight to the original sample) can help improve transferability us-
ing the GS method. However, we found that equal weights attained
the best results.

C Augmentations Included in UltCombGen

The following augmentations are composed together inUltCombGen:
DST; CutMix; random crop; random rotation; CJ; Gaussian blur;
random affine; random perspective; fPCA; elastic transform; hori-
zontal flip; Admix; random invert; random solarize; AutoAugment;
NeuTrans; CutOut; JPEG compression; K-means color quantization;
superpixels; average blur; median blur; motion blur; MeanShift blur;
edge detect; canny; average pooling; min pooling; patch shuffle;
fog; frost; rain; Guassian noise.

D Transferability Rates on ImageNet

Tab. 8 shows the transferability rates on ImageNet from Inc-v3 to
other normally traiend models with varied perturbation norms (i.e.,
values of 𝜖).
1https://bit.ly/3ynCyUD

https://bit.ly/3ynCyUD
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